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smaller than the 〈ϕ〉, 〈ϕ̃〉 vevs, it drastically reduces the temperature required for the

Universe to be driven to the metastable vacuum: essentially any temperature larger than

the supersymmetry breaking scale µ is sufficient. On the other hand we also find that any

reasonable transmission of SUSY breaking to the MSSM sector has no effect on the vacuum

transitions to, and the stability of the SUSY breaking vacuum. We conclude that for these

models the early Universe does end up in the SUSY breaking vacuum.
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1. Introduction

There is renewed interest in field-theoretical settings where a supersymmetric extension

of the Standard Model (the MSSM for example) is coupled to another sector that con-

tains supersymmetry preserving as well as a long-lived metastable supersymmetry break-

ing vacua (MSB). Intriligator, Seiberg and Shih (ISS) have argued that such metastable

supersymmetry breaking can be a viable, calculable and remarkably simple alternative to

the usual scenarios of dynamical supersymmetry breaking [2]. If the Universe started in

the metastable vacuum, then the rate of escape to the supersymmetry preserving true vac-

uum is parametrically small in the ISS scenario and the lifetime of the metastable vacuum

can easily be much longer than the age of the Universe. Supersymmetry remains broken

without paying the usual high price for arranging the hidden sector to contain no super-

symmetric ground states. This opens a possibility for the supersymmetry of the full theory

(including the MSSM sector) to be broken by the metastable vacuum of the MSB sector.

An important question that immediately follows is why did the Universe start from

the non-supersymmetric vacuum in the first place [1]? In our earlier paper [1] we provided

a simple and generic explanation: thermal effects drive the Universe to the supersymmetry

breaking vacuum even if it ends up after inflation in the supersymmetry preserving ground

state. This happens for a large class of models, of which the ISS model is an example, that

satisfy the following conditions:

• The relevant fields of the supersymmetry breaking MSB sector, of the MSSM sector,

and of the messenger sector are in thermal equilibrium. This is the case if the

SUSY breaking scenario is gauge mediation, direct mediation, or even a visible sector

breaking. (On the other hand, a SUSY breaking sector which couples to MSSM only

gravitationally would remain out of thermal equilibrium.)
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• The MSB sector is IR free and the supersymmetry preserving vacua are induced by

“dynamical supersymmetry restoration”. This condition is enough to ensure that

the SUSY preserving vacua |vac〉0 contain fewer light degrees of freedom than the

metastable ground state near the origin, |vac〉+, because one always has to integrate

out flavours to induce the dynamical term in the superpotential that restores the

supersymmetric vacua. In addition, the dynamical restoration of supersymmetry

guarantees a wide separation between |vac〉+ and |vac〉0 and hence the long lifetime

of the metastable minimum.

In the present paper we will further refine and build upon this idea. There are two

main results of this study. First, we reconsider the lower bound on the reheat temperature

in order for the Universe to be always driven to the non-supersymmetric MSB vacuum,

|vac〉+, by thermal effects. In ref.[1] a sufficient condition was obtained, namely that the

reheat temperature should be higher than the vev of the supersymmetry preserving vacuum,

TR & Φ0/ log Φ4
0. This bound was derived by considering the effect of the Nf flavours of

ϕ and ϕ̃ fields becoming heavy in the supersymmetric vacuum |vac〉0, but neglecting the

effect of the mass-gap for gauge degrees of freedom generated by the confinement of SU(N)

in |vac〉0. Since the latter would further reduce the number of light degrees of freedom in

|vac〉0, it was argued that this could only lower the required reheat temperature. In this

paper we determine by how much and find a surprising result; we show that although the

mass-gap is parametrically small relative to Φ0, it in fact dramatically reduces the minimal

value of the reheat temperature, TR, necessary for the Universe to end up in the non-

supersymmetric |vac〉+. We will show that TR > few × µ, where µ is the SUSY breaking

scale, is sufficient. This result is also essentially independent of the other parameters of the

model, such as the position of the supersymmetry preserving vacua Φ0 À µ or the numbers

of colours and flavours N and Nf of the ISS model. To get an idea of the relevant scales in

our MSB-MSSM theory one can, for example, think of µ (the SUSY breaking scale) to be

of the order µ ∼ 1−103 TeV and Φ0 (the dynamically generated vev of the SUSY vacuum)

to be of the order e.g. Φ0 ∼ 100µ. Of course, a much wider range for both, µ and Φ0 is

possible and our analysis is not affected by these values.

Our second observation, which we discuss in detail in section 5, concerns the effect

of the coupling of the MSB sector to the MSSM. In general one might be concerned that

the MSSM sector could alter our picture drastically. This is because the mass-splittings

between Standard Model particles and their superpartners induced in the metastable mini-

mum can result in a large number of MSSM states being massive at the origin, but relatively

light in the supersymmetry preserving minima. This effect reduces the number of light de-

grees of freedom in the vicinity of |vac〉+ relative to the SUSY preserving vacuum, and

can potentially start eroding the minimum at the origin of the thermal effective potential.

However, we will show that due to the large separation between |vac〉+ and |vac〉0 in field

space, and under extremely general assumptions about the communication of the super-

symmetry breaking to the visible sector and the induced mass-splittings, the entire visible

sector is rendered harmless and the effects of its mass splittings essentially decouple from

the discussion of the thermal and cosmological properties of the MSB sector. Thus, once
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the Universe is driven to the SUSY breaking vacuum |vac〉+ after reheating, it will not be

able to escape back to the supersymmetric |vac〉0 even when we couple the MSB sector

to the MSSM sector and take into account the disappearance of mass splittings between

partners and superpartners of the MSSM spectrum in |vac〉+.

Two other interesting papers [3, 4] have appeared that are in accord with the con-

clusions of [1] and upon which the present discussion touches (although both [3, 4] began

with the assumption that the system starts near the origin and were therefore somewhat

orthogonal to our approach in [1]). Ref.[3] discussed the fact that thermal effects stabilize

the metastable minimum rather than drive it away from the origin, and our findings here

confirm and extend that discussion: the coupling of the MSB sector to the MSSM cannot

change that conclusion for any reasonable choice of parameters. Ref. [4] showed in a care-

ful analysis of the behaviour of the potential near the metastable origin, that on lowering

the temperature to ∼ µ there is a second order phase transition whose endpoint is the

metastable minimum rather than the supersymmetric one.

Other relevant recent work on metastable supersymmetry breaking in the context of

strings, M-theory and field theory includes [5 – 15].

2. Recall: set-up for the ISS model and the effective potential

We choose the MSB sector to be described by the simplest known theory which exhibits

a metastable SUSY breaking – the original ISS model [2]. It is given by an SU(N) SYM

theory coupled to Nf flavours of chiral superfields ϕ and ϕ̃ transforming in the fundamental

and the anti-fundamental representations of the gauge group. There is also an Nf × Nf

chiral superfield Φi
j which is a gauge singlet. The number of flavours is taken to be large,

Nf > 3N, such that the β-function for the gauge coupling is positive, i.e. b0 = 3N−Nf < 0.

The theory is free in the IR and strongly coupled in the UV where it develops a Landau pole

at the energy-scale ΛL. At scales E ¿ ΛL the theory is weakly coupled and its low-energy

dynamics as well as the vacuum structure is under control. In particular, this guarantees

a robust understanding of the theory in the metastable SUSY breaking vacuum found in

[2].1

The tree-level superpotential of the ISS model is given by

Wcl = hTrNf
ϕΦϕ̃ − hµ2 TrNf

Φ (2.1)

where h and µ are constants and µ is taken to be much smaller than the cut-off scale

ΛL. The usual holomorphicity arguments imply that the superpotential (2.1) receives no

corrections in perturbation theory. However, there is a non-perturbative contribution to

the full superpotential of the theory, W = Wcl + Wdyn, which is generated dynamically [2]

1At energy scales of order ΛL and above, this effective description breaks down and one should use

instead a different (microscopic) description of the theory. It is provided by its Seiberg dual formulation

[16, 17] as explained in [2]. For our present purposes, we will always work at scales below ΛL and we will

only use the macroscopic formulation of the ISS model.
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and is given by

Wdyn = N

(

hNf
detNf

Φ

Λ
Nf−3N

L

)
1
N

(2.2)

The authors of [2] have studied the vacuum structure of the theory and established the exis-

tence of the metastable vacuum |vac〉+ with non-vanishing vacuum energy V+ characterised

by

〈ϕ〉 = 〈ϕ̃T 〉 = µ

(

1lN
0Nf−N

)

, 〈Φ〉 = 0 , V+ = (Nf − N)|h2µ4| (2.3)

as well as the SUSY preserving stable vacuum2 |vac〉0,

〈ϕ〉 = 〈ϕ̃T 〉 = 0 , 〈Φ〉 = Φ0 = µγ0 1lNf
, V0 = 0 (2.4)

where V0 = 0 is the energy density in this vacuum and

γ0 =

(

hε
Nf−3N

Nf−N

)−1

, and ε :=
µ

ΛL

¿ 1. (2.5)

In the metastable nonsupersymmetric vacuum (2.3) the SU(N) gauge group is Higgsed

by the vevs of ϕ and ϕ̃ and the gauge degrees of freedom are massive with mgauge = gµ.

This supersymmetry breaking vacuum |vac〉+ originates from the so-called rank condition,

which implies that there are no solutions to the F-flatness equation F
Φj

i
= 0 for the classical

superpotential Wcl. The appearance of the SUSY preserving vacuum (2.4) is caused by the

non-perturbative superpotential Wdyn and can be interpreted in the ISS model as a non-

perturbative or dynamical restoration of supersymmetry [2].

In [1] we parameterised the path interpolating between the two vacua (2.3) and (2.4)

in field space via

ϕ(σ) = ϕ̃T (σ) = σµ

(

1lN
0Nf−N

)

, Φ(γ) = γµ1lNf
, 0 ≤ γ ≤ γ0 , 1 ≥ σ ≥ 0 (2.6)

Since the Kahler potential in the free magnetic phase in the IR is that of the classical

theory, the zero-temperature effective potential VT=0(γ, σ) on the interpolating trajectory

(2.6) can be determined directly from the superpotential of the theory (2.1), (2.2).

Both, the interpolating trajectory, (2.6), and the resulting effective potential VT=0(γ, σ)

are functions of two independent variables, σ and γ, which parameterise the two directions

in the field space: ϕ = ϕ̃ = σµ and Φ = γµ. Instead of plotting VT=0 over the two-

dimensional field-space, we have chosen in [1] to parameterise it by a single combined

direction as follows. For each fixed value of γ we minimise VT=0 is terms of σ. For 0 ≤ γ ≤ 1

the minimum is at σ(γ) =
√

1 − γ2, and for 1 ≤ γ the minimum is at σ(γ) = 0. The

2In fact there are precisely Nf − N = Nc of such vacua differing by the phase e2πi/(Nf−N) as required

by the Witten index of the microscopic Seiberg dual formulation of the ISS theory.
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Figure 1: Zero temperature effective potential V̂T=0(γ) as a function of γ = Φ/µ. Solid line denotes

the potential of eq. (2.8), and dashed line — the potential of eq. (2.7) For the SUSY preserving

vacuum |vac〉0 we chose γ = γ0 = 7.5. The SUSY breaking metastable minimum |vac〉+ is always

at γ = 0. We have taken the minimal allowed values for N and Nf , N = 2, Nf = 7.

resulting expression for the effective potential VT=0(γ, σ(γ)) is now a function of γ alone

VT=0(γ, σ(γ)) = |h2µ4|



















Nf − N + 2Nγ2(1 − 1
2γ2) 0 ≤ γ ≤ 1

Nf

(

(

γ
γ0

)

Nf−N

N − 1

)2

1 ≤ γ

(2.7)

which we plot in Figure 1 as the dashed line. The SUSY preserving minimum |vac〉0 appears

at γ = γ0 far away from the origin as expected, while the SUSY breaking minimum

|vac〉+ shows up at the origin in Figure 1. However, from the two-dimensional (γ, σ)-

perspective |vac〉+ actually appears slightly away from the origin in the σ = ϕ/µ direction

at σ = 1 ¿ γ0. When thermal effects are added to the effective potential, the values

of V away from the origin will be lifted relative to the origin in the field space, and at

temperatures above the restoration of SU(N) temperature, the minimum |vac〉+ will be

shifted precisely to the origin σ = 0 and γ = 0. For this reason, in the present paper we

will use for the zero-temperature effective potential the expression without the dip at the

origin,

VT=0(γ) = |h2µ4|Nf

(

( γ

γ0

)

Nf−N

N − 1

)2

, 0 ≤ γ (2.8)

This expression is plotted in Figure 1 as the solid line. We stress again, that at exactly zero

temperature the potential at the origin is at the saddle point and the metastable minimum

|vac〉+ is reached in from there by stepping to σ = 1 in the (orthogonal to the plot) σ

direction. However, at already sufficiently low temperatures T ≥ TSU(N) the minimum

shifts to the origin.

In ref. [4] the SU(N) restoration temperature was determined to be

TSU(N) =

√
2µ

√

3Nf − N + O(g2)
(2.9)
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which for the minimal case of Nf = 7 and N = 2 gives TSU(N) ' 0.3µ, and for all our

applications can be considered to be small. The authors of [4] have also argued that the

phase transition from the minimum at the origin (at T > TSU(N )) to the minimum |vac〉+
at σ = 1, γ = 0 is second order. In the rest of the paper we will use the expression for

the effective potential (2.8) which has no dip at the origin. For Φ0 À µ or equivalently,

γ0 À σ = 1 there will be little difference between the potentials in (2.8), in (2.7) or the

two-dimensional one.

The key features of this effective potential are (1) the large distance between the two

vacua, γ0 À 1, and (2) the slow rise of the potential to the left of the SUSY preserving

vacuum. (For aesthetic reasons γ0 in Figure 1. is actually chosen to be rather small,

γ = γ0 = 7.5.)

The authors of [2] have already estimated the tunnelling rate from the metastable

|vac〉+ to the supersymmetric vacuum |vac〉0 by approximating the potential in Figure 1

in terms of a triangle. It is always possible, by choosing sufficiently small ε, to ensure that

the decay time of the metastable vacuum to the SUSY ground state is much longer than

the age of the Universe. On closer inspection the constraints imposed by this condition are

in any case very weak.

3. Effects of ϕ, ϕ̃ and confining gauge fields at finite temperature

The effective potential at finite temperature along the Φ direction is governed by the

following well-known expression [18]:

VT (Φ) = VT=0(Φ) +
T 4

2π2

∑

i

±ni

∫ ∞

0
dq q2 ln

(

1 ∓ exp(−
√

q2 + m2
i (Φ)/T 2)

)

(3.1)

The first term on the right hand side is the zero temperature value of the effective potential.

The second term is the purely thermal correction (which vanishes at T = 0) and it is

determined at one-loop in perturbation theory. The ni denote the numbers of degrees of

freedom present in the theory3 and the summation is over all of these degrees of freedom.

The upper sign is for bosons and the lower one for fermions. Finally, mi(Φ) denote the

masses of these degrees of freedom induced by the vevs of the field Φ.

As in [1] we will be using dimensionless variables for the field γ = Φ/µ and temperature,

Θ = T/|hµ| (3.2)

and will define a rescaled potential V̂ which does not have the overall constant |h2µ4| (cf.

Eq. (2.8))

V̂Θ=0(γ) =
1

|h2µ4| VΘ=0(γ) , V̂Θ(γ) =
1

|h2µ4| VΘ(γ) (3.3)

As we interpolate from the metastable vacuum to the supersymmetric one, the Nf

flavours of ϕ and ϕ̃ acquire masses mϕ = hΦ = hµγ and become heavy at large values of

Φ. This effect gives the contribution to the second term on the right hand side of (3.1) of

3Weyl fermions and complex scalars each count as n = 2.
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the form4

∆V̂Θϕ,ϕ̃(γ) =
h2

2π2
Θ4

∑

±

±4NNf

∫ ∞

0
dq q2 ln

(

1 ∓ exp(−
√

q2 + γ2/Θ2)
)

. (3.4)

The above contribution (3.4) to the effective potential takes into account the mismatch

between the light and heavy ϕ, ϕ̃ degrees of freedom in the vicinity of the vacua |vac〉+ and

|vac〉0. This is precisely the contribution already taken into account in [1]. We will now also

include the effect of massive SU(N) degrees of freedom (gauge fields and gauginos of the

ISS sector). In the SUSY breaking vacuum |vac〉+ these degrees of freedom can be counted

as massless5, but in the SUSY preserving vacuum |vac〉0 the gauge group is confined. This

implies that there is a mass-gap for the gauge degrees of freedom which is set by the value

of the gaugino condensate 〈λλ〉.
What happens is that away from the SUSY breaking SU(N) vacuum |vac〉+ the mass-

eigenstate spectrum for gauge degrees of freedom changes from massless gauge fields and

gauginos to massive colourless states. We will model this effect by continuing to use the

1-loop approximation of (3.1), in terms of dressed or massive gauge fields and gauginos.

Their mass is given by the mass-gap,

mgauge = 〈λλ〉 1
3 =

(

(hµγ)Nf

ΛL
Nf−3N

)

1
3N

(3.5)

On the right hand side of (3.5) we used the (exact) value of the gaugino condensate as

determined by the nonperturbative superpotential (2.2) and we have expressed everything

in terms of the dimensionless variable γ. Relating to the value of γ at the SUSY preserving

vacuum |vac〉0 we rewrite (3.5) as

mgauge = h
1
3 µ

(

γ

γ0

)

Nf
3N

γ
1
3
0 (3.6)

which at large γ lies in the expected range µ ¿ mgauge ¿ mϕ for ε ¿ 1.

This analysis leads us to the following expression for the contribution of gauge degrees

of freedom to the thermal effective potential (3.1)

∆V̂Θ gauge(γ) =
h2

2π2
Θ4

∑

±

±2(N2 − 1)

∫ ∞

0
dq q2 ln

(

1 ∓ exp(−
√

q2 + m2
gauge/T

2)
)

(3.7)

where

m2
gauge

T 2
= h− 4

3

(

γ

γ0

)

2Nf
3N

γ
2
3
0

1

Θ2
(3.8)

4There are only two terms in the sum in (3.4): one for bosons (+), and one for fermions (-). The

prefactor 4NNf counts the total number of bosonic degrees of freedom in ϕa
i and ϕ̃i

a.
5At very low temperatures the gauge group SU(N) is Higgsed and gauge masses are mgauge = gµ which

are considered negligible. At slightly higher temperatures T ∼ 1
2
µ the SU(N) is restored and all gauge

degrees of freedom become truly massless.
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In figure 2 we plot the thermal effective potential of the ISS model including gauge

mass-gap effects (black solid line)

V̂Θ tot = V̂Θ=0(γ) + ∆V̂Θϕ,ϕ̃(γ) + ∆V̂Θgauge(γ) (3.9)

versus the expression for V̂Θ where the mass-gap for gauge degrees of freedom is not taken

into account (red dashed line),

V̂Θ = V̂Θ=0(γ) + ∆V̂Θ ϕ,ϕ̃(γ) + ∆V̂Θ gauge(γ = 0) (3.10)

The last term in the above equation, ∆V̂Θgauge(γ = 0), is a constant shift of the potential

as a whole; it does not affect the relative heights of |vac〉+ and |vac〉0 and is included to

represent the contributions of massless gauge degrees of freedom.

It follows from our results in figure 2 that the inclusion of the dynamical gauge boson

masses in (3.9) does lower the critical temperature significantly. This is even more apparent

in figure 3 where we compare the critical temperature with gauge boson masses included

to the one obtained when we include only the mass effects of ϕ and ϕ̃ fields. Indeed,

performing a similar analysis as the one in [1, section 3.2.1] one obtains in leading order

for large γ0,

Θcrit ∼
γ

1
3
0

log
(

γ
4
3

) , (3.11)

which is parametrically smaller than γ0. For not too large values of γ0, say γ0 . 1000, we

note (cf. figure 3) that the resulting critical temperature is of order a few µ and does not

depend strongly on the value of γ0.

Furthermore Θcrit is not very sensitive to the choice of Nf and N either, as we can see

in figure 4.

4. Behaviour of the field after nucleation/rolling

As in [1], one should examine the behaviour of the fields to make sure that for temperatures

T & Tcrit the phase transition to the vacuum at the origin completes. There are two

timescales that are of concern: the time for the field Φ to roll to |vac+〉 and the time

for oscillations around |vac+〉 to be damped. The situation can in principle be much more

delicate than anticipated in our previous paper since as we have seen in the previous section,

the mass scales involved are parametrically different. In this section we will therefore briefly

revisit the cosmological discussion in order to make sure our previous conclusion that at

temperatures T & Tcrit the phase transition completes is unchanged.

Again, in order to make order of magnitude estimates of timescales, it is sufficient to

model the classical potential as linear,

V = const T 4 Φ

Φ0
. (4.1)

Neglecting for the moment the damping effect of the ϕΦϕ̃ coupling, and solving the field

equations assuming that the contribution of the Hubble constant, H ∼ T 2/MPl is negligible,

– 8 –
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we find that the field falls to the origin in time

∆t = const′
Φ0

T 2
0

∼ Φ0

MPl
t0, (4.2)

where we have assumed a radiation dominated Friedmann-Robertson-Walker universe with

scale factor a(t) ∼ (t/t0)
1
2 and T = T0/a(t).

This time ∆t should be much shorter than the time needed for the Universe to cool

enough for the origin to be lifted, which is tcool ∼ t0. This condition is satisfied

tcool ∼ t0 À ∆t , as long as Φ0 ¿ MP l (4.3)

which in our settings is always the case.

After the transition, the field Φ undergoes coherent oscillation about the origin. Again,

the damping provided by the hϕΦϕ̃ coupling captures the field Φ at the origin and prevents

it escaping as T cools: the decaying oscillation amplitudes are of order

Φmax(T )

Φ0
=

√

T

T0
e−

1
2
ΓΦ(t−t0) (4.4)

where the typical decay rate is ΓΦ ∼ T . As a most conservative case, assuming that the

initial temperature was of order µ and initial oscillations of order Φ0, we use

T ∼ T0 ∼ µ , ΓΦ(t − t0) ∼ µ t0 ∼ µ MPl/T
2 ∼ MPl/µ (4.5)

and find
Φmax

µ
∼ Φ0

MP l

MP l

µ
e
− 1

2

MPl
µ ≤ 2e−1 Φ0

MP l

< 1 (4.6)

or Φmax < µ ¿ Φ0 and the oscillations are damped.

5. Effects of Standard Model mass splittings

So far we have considered thermal effects in the pure ISS model. In a more realistic scenario

the ISS model will act as the supersymmetry breaking sector coupled to a supersymmetric

extension of the Standard Model. In this section we will include effects of the Standard

Model particles and their superpartners.

In the metastable state |vac〉+ supersymmetry is broken at a scale ∼ µ. In the super-

symmetric state |vac〉0 supersymmetry is unbroken. This implies that the mass splittings

between SM particles and their superpartners are zero in |vac〉0, and of the order αµ in

|vac〉+ (where α is a coupling for the mediation of SUSY breaking; in the following analysis

we assume α2 < 1).

In principle we can envision several possible ways that SUSY can be restored in |vac〉0
(in the following we neglect all SM masses in |vac〉+ whereas all superpartners get masses

αµ in |vac〉+). In figure 5 we schematically depict three possibilities for how the masses

of SM particles and their superpartners behave as functions of γ. If both, the masses of

the SM particles and their superpartners, are monotonically increasing (green and blue

curves in figure 5) they act in the same direction as the ϕ-fields whose masses also increase

– 9 –
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with γ. At nonvanishing temperature they will stabilize |vac〉+. However, if the masses

decrease towards γ0 (red curves in figure 5) we expect a destabilising effect, because we

get additional massless degrees of freedom in the supersymmetric vacuum |vac〉+. Let

us now investigate whether this destabilizing effect can lead to transitions towards the

supersymmetric vacuum.

We expect the strongest destabilizing effect on |vac〉+ if the masses of the superpartners

tend to zero at γ = γ0 while the masses of the SM particle remain zero (red line in figure

5). We consider two simple possibilities for the MSSM sector superpartner masses mSP ,

mSP (γ)=αµ
(γ0 − γ)

γ0
, (5.1)

m′
SP (γ)=αµ

(

VT=0(γ)

VT=0(0)

) 1
4

= αµ



1 −
(

γ

γ0

)

Nf−N

N





1
2

. (5.2)

The first one, mSP is the simplest possible linear behavior whereas m′
SP relates the super-

symmetry breaking to the value of the potential, Eq. (2.8).

Transitions to the supersymmetric vacuum can only occur for temperatures below the

degeneracy temperature Tdegen. In general Tdegen will be shifted to slightly larger values in

the presence of particles which are massless at γ0 but massive at6 γ = 0.

T SM
degen = Tdegen +

1

16

(

3

2π2

)
3
4

Nf
− 1

4 (2NNf + N2 − 1)−
3
4
α2

h
1
2

NSMµ + O
(

α4N2
SM

)

, (5.3)

where NSM is the number of massive superpartners half of which are bosons and the other

half are fermions. In the following we will assume7 Tdegen > T > TSU(N) > 0.2µ. For

temperatures below TSU(N) the supersymmetry breaking minimum is even more stable due

to the formation of the σ condensate (i.e. Higgsing of the SU(N)).

Let us first determine whether the SM particles can completely erode the minimum at

the origin thereby allowing for classical transitions to the SUSY vacuum. For T > TSU(N)

and close to γ = 0 the zero-temperature contribution VT=0, Eq. (2.8), to the potential is

VT=0(γ) ≈ Nf



1 − 2

(

γ

γ0

)

Nf−N

N



 |h2µ4|. (5.4)

As long as the masses are m . T the thermal contribution gives,

∆VT = −π2

90
T 4

(

nB +
7

8
nF

)

+
1

24
T 2

(

∑

B

m2
B +

1

2

∑

F

m2
F

)

(5.5)

6For the same reason Tcrit will slightly increase, too.
7For too small TSU(N), the stabilization of the local minimum ∼ −T 4 at the origin becomes very weak

just above TSU(N) and tunnelling in the direction of |vac〉0 may become possible for relatively small values

of γ0 even in absence of additional SM sector particles. The inequality TSU(N) > 0.2 places a rather mild

bound on Nf . For small gauge coupling g2 ¿ h2, 3Nf − N < 50 is a sufficient condition.
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where nB and nF are the number of fermionic and bosonic degrees of freedom and mB and

mF correspond to the masses of bosons and fermions. The masses of the ϕ-fields and the

gauge boson masses grow with γ and tend to stabilize a local minimum at γ = 0 (cf. Eq.

(5.5)). The masses from the SM sector can, however, decrease (red line in figure 5) thereby

destabilizing γ = 0. Neglecting the gauge boson masses for simplicity and assuming that

all massive particles of the SM sector have equal masses mSM the thermal contribution is,

∆V̂Θ(γ)=−π2

96
h2Θ4 (8NNf + NSM)+

NNf

4
h2Θ2γ2 +

NSM

32
Θ2m2

SM(γ),

for mSM , h2γ . T . (5.6)

If we can find a point γ1 < γ0 such that

VΘ(γ1) > VΘ(0) (5.7)

we have to cross a barrier on our way to the supersymmetric minimum at γ0 and classical

evolution to the state |vac〉0 is impossible. Using Eq. (5.1) for the masses of the massive

SM sector fields we find

V̂Θ(1/10) − V̂Θ(0) =
NNf

400
Θ2h2µ2

(

1 − 5

2

NSM

h2NNf

α2

γ0

)

+ O
(

γ
N−Nf

N
0

)

. (5.8)

If the term in the brackets is positive we have the desired barrier. For h ∼ 1, γ0 ∼ 100 and

NSM < 103 this allows all α2 . 0.5. Using the for Eq. (5.2) for the mass we obtain

V̂Θ(1/10) − V̂Θ(0) =
NNf

400
Θ2h4µ2 + O

(

γ
N−Nf

N
0

)

> 0. (5.9)

In this order we get no bound on α at all because the dependence of the mass on γ0 is even

weaker in the interesting region around the origin.

Let us now check whether tunnelling is sufficiently suppressed. For the tunnelling we

model the potential by a flat potential depicted in figure 6. Between γ = 0 and γ = γx,

the potential is flat with value VT (γx) = VT (0). Then it decreases linearly towards VT (γ0)

at γ0. Using similar approximations as above8 one finds that

γx

γ0
& 0.05 for γ0 & 50, NSM . 103 and α . 0.1, (5.10)

demonstrating that the thickness of the barrier grows parametrically with γ0. For our

model potential the bounce action is (cf. [1]),

S3D

T
=

8π

Θh2

√
3

5
Nfγ

5
2
x (γ0 − γx)

1
2 (5.11)

and
S3D

T
& 250 for γ0 & 50. (5.12)

We conclude that under relatively mild conditions, SM sector particles do not induce

transitions to the supersymmetric vacuum |vac〉0.
8For h2Θ2 . γ2

x/γ2
0 the change in the zero temperature contribution, Eq. (5.4), to the potential cannot

be neglected. We have checked numerically that the relation nevertheless holds in these cases, too.
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6. Conclusions

In this paper and in its companion [1] we have examined the dynamics of metastable

SUSY breaking vacua in a cosmological setting. We conclude that generically the Universe

is driven to the supersymmetry breaking metastable vacuum by thermal effects.

In this paper we focused on the contributions to the effective potential of the gauge

degrees of freedom which develop a mass-gap in the SUSY preserving confining vacua in

the MSB sector. This reduces drastically the temperature required for the Universe to be

driven to the metastable vacuum. We found that essentially any temperature larger than

a few times the supersymmetry breaking scale µ is sufficient to ensure that the Universe

ends in the desired nonsupersymmetric vacuum state.

Furthermore, we have investigated the effects of the MSSM sector fields on the fate of

this nonsupersymmetric vacuum. We have found (under very mild assumptions) that they

are negligible and do not affect the stability of |vac〉+.
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Figure 3: Θcrit (solid black) and Θold
crit (red dashed) as functions of γ0 for Nf = 7 and N = 2. The

left panel is plotted linearly whereas the right panel is a double logarithmic plot.
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Figure 4: Θcrit as a function of γ0 for Nf = 7 (black), Nf = 12 (green), and Nf = 100 (red).

The number of colours is N = 2. The left plot is linear whereas the right is logarithmic on the

horizontal axis. Note that the dependence of Θcrit on γ0 is always relatively weak.
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Figure 5: Possible scenarios for the masses of the SM particles (solid) and their superpartners

(dashed) as a function of γ. In the state |vac〉+ at γ = 0 SM particles are light and superpartners

have masses αµ. At γ = γ0 supersymmetry is restored and the difference between the masses of

particles and their superpartner vanishes. Away from the special points γ = 0 and γ = γ0 the

behavior is model dependent. The different colours depict three possibilities how the masses could

behave.
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Figure 6: Flat potential (red) used in the model the true potential (black) in the estimate of the

tunnelling rate.
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